
Page 1 of 15

PYTHON CHEATSHEETS

Print Hello World

Printing Output

Taking Input From User

Python Comments

It is used to make the code more readable.

Single-Line Comments

Single-line comments start with the hash symbol (#).

Multi-Line Comments

To write multi-line comments you can use (#) at each line.

print("Hello World!!")

name = "Rahul"

print("My name is: ", var1)

#This is a single line comment

print("Hello World!!")

#This is a

#multi line

#comment

print("Hello World!!")

let = input(“Enter your Name: ”)

print("Hi my name is: ", name)

Page 2 of 15

Escape Sequence

Newline

Newline Character

Backslash

It adds a backslash

Single Quote

It adds a single quotation mark

Variables

Variables are used to store data values. Python is a dynamically typed
language, which means you don't need to declare a variable's type directly.

Example:

Data Types

Data types in Python represent the types of values that a variable can hold.

Python supports various built-in data types, including:

Numeric Types

 int: 4, -6, 0

 float: 3.14, 2.0.

print("\n")

name = "john" #type str

age = 22 #type int

print("\\")

print("\’")

Page 3 of 15

 complex 5 + 3i

Text Type

 str: “Hello Python”

Boolean Type

 Boolean data consists of True or False values.

Sequence Types

 List

 Tuple

 Set

 Dict

Numbers

In Python, numerical data types are classified into three types:

 int

 float

 complex

int

Integers are whole numbers, either positive or negative, with no decimal
points.

Example:

x = 24

y = 100548

print(type(x))

print(type(y))

Page 4 of 15

float

Floating-point numbers are real numbers with a decimal point.

Example:

complex

Complex numbers are made up of both real and imaginary numbers.

Example:

Operators

Arithmetic operators

Python arithmetic operators are + (addition), - (subtraction), * (multiplication), /

(division), // (floor division), % (modulus).

Assignment operators

Python assignment operators are used to assign values to variables, including =,

+=, -=, *=, /=, %=, **=, //=, &=, |=.

Comparison operators

Python comparison operators are used to compare two values, and include ==
(equal), != (not equal), > (greater than), < (less than), >= (greater than or equal

to), and <= (less than or equal to).

x = 2.34

y = 3.1

print(type(x))

print(type(y))

x = 6j

y = -6j

print(type(x))

print(type(y))

Page 5 of 15

Logical operators

Python logical operators are and, or, and not.

Strings

Python strings are a sequence of characters that are enclosed by double quotes
("") or single quotes (' '). For example, "hello" is a string containing a sequence of
characters 'h', 'e', 'l', 'l', 'o'.

Example:

Access String Characters

Example:

Compare Two Strings

We use the == operator to compare two strings.

Example:

Double Quotes

str1 = "Hello Python"

Single quotes

str2 = 'Hello Python'

str1 = "Python"

print(str1[2])

str1 = "Hello Python"

str2 = "I love Python"

str3 = "Hello Python"

print(str1 == str2)

print(str1 == str3)

Page 6 of 15

String Concatenation

To concatenate, two or more strings you can use the + operator.

Example:

String Length

To find the length of a string, use the len() function.

Example:

upper() method

The upper() method converts a string to upper case.

Example:

lower() method

The lower() method converts a string to upper case.

Example:

str1 = "Hello"

str2 = " World"

result = str1 + str2

print(result)

str1 = "Hello Python"

print(len(str1))

str1 = "Hello Python"

print(str1.upper())

str1 = "Hello Python"

print(str1.lower())

Page 7 of 15

replace method

The replace()method replaces a string with another string.

Example:

Lists

A list is an ordered collection of data elements separated by a comma and
enclosed within square brackets. They store multiple items in a single
variable.

Example:

Access List Items

Example:

append() method

To add an item to the end of the list, use the append() method.

Example:

str1 = "Hello Python"

print(str1.replace("Python", "World"))

list1 = [20, 40, 60]

print(list1)

flowers = ["Rose", "Sunflower", "Lotus"]

print(flowers[1])

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.append("Blossom")

print(flowers)

Page 8 of 15

insert() method

To insert a list item at a specific index, use the insert() method.

Example:

extend() method

The extend() method adds an entire list to the existing list.

Example:

pop() method

The pop() method removes the last item from the list if no index is specified. If

an index is provided, the item at that specific index is removed.

Example:

clear()

The clear() method clears all items in the list and prints an empty list.

Example:

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.insert(2, "Blossom")

print(flowers)

flowers = ["Rose", "Sunflower", "Lotus"]

flowers2 = ["Blossom", "Tulip", "Jasmine"]

flowers.extend(flowers2)

print(flowers)

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.pop()

print(flowers)

print(flowers)

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.clear()

print(flowers)

Page 9 of 15

Tuples

A tuple is an ordered collection of data elements separated by a comma and
enclosed within parentheses. They store multiple items in a single variable.
Tuples are unchangeable meaning we can not change them after creation.

Example:

count() method

The count() method returns the number of times the specified items appears

in the tuple.

Example:

index()

The index() method returns the index of the first occurrence of the tuple item.

Example:

Sets

Sets are unordered collection of data items. They store multiple items in a single
variable. Sets items are separated by commas and enclosed within curly braces
{}.

colors = ("Red", "Blue", "White")

print(colors)

colors = ("Red", "Blue", "White")

newtup = colors.count("White")

print(newtup)

colors = ("Red", "Blue", "White")

newtup = colors.index("White")

print(newtup)

Page 10 of 15

Add set Items

To add a single item to a set use the add() method.

Example:

Update Set

To add items from another set into the existing set, use the update() method.

Example:

isdisjoint() method

The isdisjoint() method checks if items of given set are present in another

set.

Example:

issuperset()

The issuperset() method checks if all the items of a specified set are

present in the original set.

Example:

fruits = {"Apple", "Orange", "Mango"}

fruits.add("Banana")

print(fruits)

fruits = {"Apple", "Orange", "Mango"}

fruits2 = {"Lemon", "Strawberry", "Litchi"}

fruits.update(fruits2)

print(fruits)

fruits = {"Apple", "Orange", "Mango"}

fruits2 = {"Apple", "Orange", "Mango"}

print(fruits.isdisjoint(fruits2))

fruits = {"Apple", "Orange", "Mango"}

fruits2 = {"Apple", "Mango"}

print(fruits.issuperset(fruits2))

Page 11 of 15

Dictionaries

Dictionaries are ordered collection of data items. Dictionaries items are key-
value pairs that are separated by commas and enclosed within curly brackets {}.

pop()

The pop() method removes the item with the provided key name.

Example:

clear()

The clear() method removes all the items from the dictionary.

Example:

popitem()

The popitem() method removes the last item from the dictionary.

Example:

details = {

 "name":"Rahul",

 "age":22,

 "canVote":True

}

details.pop("canVote")

print(details)

details = {

 "name":"Rahul",

 "age":22,

 "canVote":True

}

details.clear()

print(details)

details = {

 "name":"Rahul",

 "age":22,

 "canVote":True

}

details.popitem()

print(details)

Page 12 of 15

If Statement

The if statement is used to execute a block of code if a given condition is true.

If...else statement

The If...else statement is used to execute a block of code if a specified condition
is true and another block of code if the condition is false.

if…elif…else Statement

Python's if-elif-else statement executes a block of code among multiple
possibilities.

Example:

if condition:

 # block of code to be executed if the condition is true

if condition:

 # block of code to be executed if the condition is true

else:

 # block of code to be executed if the condition is false

if (condition1):

 # block of code to be executed if condition1 is true

elif (condition2):

 # block of code to be executed if the condition1 is false and

condition2 is true

else:

 # block of code to be executed if the condition1 is false and

condition2 is false

number = 10

if (number > 15):

 print("Number is greater than 15")

elif (number > 10):

 print("Number is greater than 10 but less than or equal to 15")

else:

 print("Number is equal to 10")

Page 13 of 15

Loops

A loop or iteration statement repeatedly executes a statement, until the

controlling expression is false (0).

for Loop

A for loop in Python is used to iterate over a sequence (e.g., a list, tuple, or
string) or any other iterable object.

Example:

while Loop

While loops in Python are used to execute a block of code several times as long
as a condition is true.

Example:

Functions

A function is a block of code that executes a specific task when called. They are
defined with the def keyword followed by the function name, parentheses (), and
a colon.

Example:

companies = ["Google", "Facebook", "Microsoft"]

for i in companies:

 print(i)

number = 1

while (number <= 5):

 print(number)

 number = number + 1

def my_func():

 print("Hello World")

Page 14 of 15

Call a function

To call a function, use the function name followed by parenthesis

Example:

Function Arguments

Arguments are the inputs passed to the function.

Example:

Recursion

Recursion is a programming method that involves calling a function itself to solve
a problem.

Example:

OOPS

OOPS stand for Object Oriented Programming System. It is a programming

paradigm that uses objects and classes in programming.

def my_func():

 print("Hello World")

my_func()

def my_func(fname, lname):

 print("Hello", fname, lname)

my_func("John", "Doe")

def fibonacci(n):

 if n == 1 or n == 2:

 return 1

 else:

 return fibonacci(n - 1) + fibonacci(n - 2)

print(fibonacci(10))

Page 15 of 15

Class

A class is a blueprint for creating objects. It can be defined using the class

keyword, followed by the class name and a colon.

Example:

Objects

An object is an instance of a class.

Example:

class Student:

 name = "Arka"

 age = 22

class Student:

 name = "Arka"

 age = 22

obj1 = Student()

print(obj1.name)

	Print Hello World
	Printing Output
	Taking Input From User
	Python Comments
	Single-Line Comments
	Multi-Line Comments

	Variables
	Data Types
	Numeric Types
	Text Type
	Boolean Type
	Sequence Types

	Numbers
	int
	float
	complex

	Operators
	Arithmetic operators
	Assignment operators
	Comparison operators
	Logical operators

	Strings
	Access String Characters
	Compare Two Strings
	String Concatenation
	String Length
	upper() method
	lower() method
	replace method

	Lists
	Access List Items
	append() method
	insert() method
	extend() method
	pop() method
	clear()

	Tuples
	count() method
	index()

	Sets
	Add set Items
	Update Set
	isdisjoint() method
	issuperset()

	Dictionaries
	pop()
	clear()
	popitem()
	If Statement
	If...else statement
	if…elif…else Statement

	for Loop
	while Loop
	Functions
	Call a function
	Function Arguments

	Recursion
	OOPS
	Objects

