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PYTHON CHEATSHEETS 

Print Hello World 

 

Printing Output 

 

 

Taking Input From User 

 

 

Python Comments 

It is used to make the code more readable. 

Single-Line Comments 

Single-line comments start with the hash symbol (#). 

 
Multi-Line Comments 

To write multi-line comments you can use (#) at each line. 

 

 

 

print("Hello World!!") 

name = "Rahul"  

print("My name is: ", var1) 

#This is a single line comment 

print("Hello World!!") 

#This is a 

#multi line 

#comment 

print("Hello World!!") 

let  = input(“Enter your Name: ”) 

print("Hi my name is: ", name) 
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Escape Sequence 

Newline 

Newline Character 

 

Backslash 

It adds a backslash 

 

Single Quote 

It adds a single quotation mark 

 

Variables 

Variables are used to store data values. Python is a dynamically typed 
language, which means you don't need to declare a variable's type directly. 

Example: 

 

 

Data Types 

Data types in Python represent the types of values that a variable can hold. 

Python supports various built-in data types, including: 

Numeric Types 

 int: 4, -6, 0 

 float: 3.14, 2.0. 

print("\n") 

 

name = "john"  #type str 

age = 22       #type int 

print("\\") 

 

print("\’") 
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 complex 5 + 3i 

Text Type 

 str: “Hello Python” 

Boolean Type 

 Boolean data consists of True or False values. 

Sequence Types 

 List 

 Tuple 

 Set 

 Dict 

Numbers 

In Python, numerical data types are classified into three types: 

 int 

 float 

 complex 
 

int 

Integers are whole numbers, either positive or negative, with no decimal 
points. 

Example: 

 
 

 

 

 

x = 24 

y = 100548 

 

print(type(x)) 

print(type(y)) 
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float 

Floating-point numbers are real numbers with a decimal point. 

Example: 

 

 

 
 

complex 

Complex numbers are made up of both real and imaginary numbers. 

Example: 

 

 

 

Operators 

Arithmetic operators 

Python arithmetic operators are + (addition), - (subtraction), * (multiplication), / 

(division), // (floor division), % (modulus). 

Assignment operators 

Python assignment operators are used to assign values to variables, including =, 

+=, -=, *=, /=, %=, **=, //=, &=, |=. 

Comparison operators 

Python comparison operators are used to compare two values, and include == 
(equal), != (not equal), > (greater than), < (less than), >= (greater than or equal 

to), and <= (less than or equal to). 

x = 2.34 

y = 3.1 

 

print(type(x)) 

print(type(y)) 

x = 6j 

y = -6j 

 

print(type(x)) 

print(type(y)) 
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Logical operators 

Python logical operators are and, or, and not. 

Strings 

Python strings are a sequence of characters that are enclosed by double quotes 
("") or single quotes (' '). For example, "hello" is a string containing a sequence of 
characters 'h', 'e', 'l', 'l', 'o'. 

Example: 

 

 

 

Access String Characters 

Example: 

 

 

Compare Two Strings 

We use the == operator to compare two strings. 

Example: 

 

 

 

 

 

 

# Double Quotes 

str1 = "Hello Python" 

 

# Single quotes 

str2 = 'Hello Python' 

str1 = "Python" 

print(str1[2]) 

str1 = "Hello Python" 

str2 = "I love Python" 

str3 = "Hello Python" 

 

print(str1 == str2) 

print(str1 == str3) 
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String Concatenation 

To concatenate, two or more strings you can use the + operator. 

Example: 

 

 

 

String Length 

To find the length of a string, use the len() function. 

Example: 

 

 

upper() method 

The upper() method converts a string to upper case. 

Example: 

 

 

lower() method 

The lower() method converts a string to upper case. 

Example: 

 

 

str1 = "Hello" 

str2 = " World" 

 

result = str1 + str2 

print(result) 

str1 = "Hello Python" 

print(len(str1)) 

str1 = "Hello Python" 

print(str1.upper()) 

str1 = "Hello Python" 

print(str1.lower()) 
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replace method 

The replace()method replaces a string with another string. 

Example: 

 

 

Lists 

A list is an ordered collection of data elements separated by a comma and 
enclosed within square brackets. They store multiple items in a single 
variable. 

Example: 

 

 

Access List Items 

Example: 

 

 

append() method 

To add an item to the end of the list, use the append() method. 

Example: 

 

 

 

 

 

str1 = "Hello Python" 

print(str1.replace("Python", "World")) 

list1 = [20, 40, 60] 

print(list1) 

flowers = ["Rose", "Sunflower", "Lotus"] 

print(flowers[1]) 

flowers = ["Rose", "Sunflower", "Lotus"] 

 

flowers.append("Blossom") 

 

print(flowers) 
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insert() method 

To insert a list item at a specific index, use the insert() method. 
 

Example: 

 

 

 

extend() method 

The extend() method adds an entire list to the existing list. 

Example: 

 

 

 

pop() method 

The pop() method removes the last item from the list if no index is specified. If 

an index is provided, the item at that specific index is removed. 

Example: 

 

 

 

clear() 

The clear() method clears all items in the list and prints an empty list. 
 

Example: 

flowers = ["Rose", "Sunflower", "Lotus"] 

 

flowers.insert(2, "Blossom") 

 

print(flowers) 

flowers = ["Rose", "Sunflower", "Lotus"] 

flowers2 = ["Blossom", "Tulip", "Jasmine"] 

 

flowers.extend(flowers2) 

 

print(flowers) 

flowers = ["Rose", "Sunflower", "Lotus"] 

flowers.pop() 

print(flowers) 

print(flowers) 

flowers = ["Rose", "Sunflower", "Lotus"] 

flowers.clear() 

print(flowers) 
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Tuples 

A tuple is an ordered collection of data elements separated by a comma and 
enclosed within parentheses. They store multiple items in a single variable. 
Tuples are unchangeable meaning we can not change them after creation. 

Example: 

 
 

count() method 

The count() method returns the number of times the specified items appears 

in the tuple. 

Example: 

 

 

index() 

The index() method returns the index of the first occurrence of the tuple item. 

Example: 

 

 

Sets 

Sets are unordered collection of data items. They store multiple items in a single 
variable. Sets items are separated by commas and enclosed within curly braces 
{}. 

 

 

colors = ("Red", "Blue", "White") 

print(colors) 

colors = ("Red", "Blue", "White") 

newtup = colors.count("White") 

print(newtup) 

colors = ("Red", "Blue", "White") 

newtup = colors.index("White") 

print(newtup) 
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Add set Items 

To add a single item to a set use the add() method. 

Example: 

 

 

Update Set 

To add items from another set into the existing set, use the update() method. 

Example: 

 

 

 

 

isdisjoint() method 

The isdisjoint() method checks if items of given set are present in another 

set. 

Example: 

 

 

issuperset() 

The issuperset() method checks if all the items of a specified set are 

present in the original set. 

Example: 

 

fruits = {"Apple", "Orange", "Mango"} 

fruits.add("Banana") 

print(fruits) 

fruits = {"Apple", "Orange", "Mango"} 

fruits2 = {"Lemon", "Strawberry", "Litchi"} 

 

fruits.update(fruits2) 

 

print(fruits) 

fruits = {"Apple", "Orange", "Mango"} 

fruits2 = {"Apple", "Orange", "Mango"} 

print(fruits.isdisjoint(fruits2)) 

fruits = {"Apple", "Orange", "Mango"} 

fruits2 = {"Apple", "Mango"} 

print(fruits.issuperset(fruits2)) 
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Dictionaries 

Dictionaries are ordered collection of data items. Dictionaries items are key-
value pairs that are separated by commas and enclosed within curly brackets {}. 

pop() 

The pop() method removes the item with the provided key name. 

Example: 

 

 

 

 

clear() 

The clear() method removes all the items from the dictionary. 

Example: 

 

 

 

 

popitem() 

The popitem() method removes the last item from the dictionary. 

Example: 

 

 

details = { 

  "name":"Rahul", 

  "age":22, 

  "canVote":True 

} 

details.pop("canVote") 

print(details) 

details = { 

  "name":"Rahul", 

  "age":22, 

  "canVote":True 

} 

details.clear() 

print(details) 

details = { 

  "name":"Rahul", 

  "age":22, 

  "canVote":True 

} 

details.popitem() 

print(details) 
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If Statement 

The if statement is used to execute a block of code if a given condition is true. 

 
 

If...else statement 

The If...else statement is used to execute a block of code if a specified condition 
is true and another block of code if the condition is false. 

 

 

 

if…elif…else Statement 

Python's if-elif-else statement executes a block of code among multiple 
possibilities. 

 

 

 

 

 

Example: 

 

 

 

 

 

if condition: 

  # block of code to be executed if the condition is true 

if condition: 

  # block of code to be executed if the condition is true 

else: 

  # block of code to be executed if the condition is false 

if (condition1): 

  # block of code to be executed if condition1 is true 

elif (condition2): 

  # block of code to be executed if the condition1 is false and 

condition2 is true 

else: 

  # block of code to be executed if the condition1 is false and 

condition2 is false 

number = 10 

if (number > 15): 

   print("Number is greater than 15") 

elif (number > 10): 

   print("Number is greater than 10 but less than or equal to 15") 

else: 

   print("Number is equal to 10") 
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Loops 

A loop or iteration statement repeatedly executes a statement, until the 

controlling expression is false (0). 

for Loop 

A for loop in Python is used to iterate over a sequence (e.g., a list, tuple, or 
string) or any other iterable object. 

Example: 

 

 

while Loop 

While loops in Python are used to execute a block of code several times as long 
as a condition is true. 

Example: 

 

 

 

Functions 

A function is a block of code that executes a specific task when called. They are 
defined with the def keyword followed by the function name, parentheses (), and 
a colon. 

Example: 

 

 

 

 

companies = ["Google", "Facebook", "Microsoft"] 

for i in companies: 

    print(i) 

number = 1 

while (number <= 5): 

    print(number) 

    number = number + 1 

def my_func(): 

    print("Hello World") 
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Call a function 

To call a function, use the function name followed by parenthesis 

Example: 

 

 

Function Arguments 

Arguments are the inputs passed to the function. 

Example: 

 

 

Recursion 

Recursion is a programming method that involves calling a function itself to solve 
a problem. 

Example: 

 

 

 

 

OOPS 

OOPS stand for Object Oriented Programming System. It is a programming 

paradigm that uses objects and classes in programming. 

 

def my_func(): 

    print("Hello World") 

my_func() 

def my_func(fname, lname): 

    print("Hello", fname, lname) 

my_func("John", "Doe") 

def fibonacci(n): 

    if n == 1 or n == 2: 

      return 1 

    else: 

      return fibonacci(n - 1) + fibonacci(n - 2) 

print(fibonacci(10)) 
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Class 

A class is a blueprint for creating objects. It can be defined using the class 

keyword, followed by the class name and a colon. 

Example: 

 

 

Objects 

An object is an instance of a class. 

Example: 

 

 

class Student: 

    name = "Arka" 

    age = 22 

class Student: 

    name = "Arka" 

    age = 22 

 

obj1 = Student() 

print(obj1.name) 
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